
The Petri Net Markup Language

Michael Weber1,? and Ekkart Kindler2

1 Humboldt-Universität zu Berlin, Institut für Informatik
mweber@informatik.hu-berlin.de

2 Technische Universität München, Fakultät für Informatik
kindler@informatik.hu-berlin.de

Abstract. The Petri Net Markup Language (PNML) is an XML-based
interchange format for Petri nets. PNML supports any version of Petri
net since new Petri net types can be defined by so-called Petri Net Type
Definitions (PNTD).
In this paper, we present the syntax and the semantics of PNML as well
as the principles underlying its design. Moreover, we present an extension
called modular PNML, which is a type independent module concept for
Petri nets.

1 Introduction

One of the most required features of Petri net tools are functions for exporting
Petri nets to other tools and for importing nets from other tools. The problem
with this apparently simple and purely technical feature is the multitude of
different Petri net types and the multitude of different tools and file formats for
these different net types. This makes it impossible to provide all desired import
and export functions (with reasonable expenses). This situation was the starting
point of a standardization effort launched during the International Conference on
Application and Theory of Petri Nets 2000 with several proposals for XML-based
interchange formats [1].

The Petri Net Markup Language (PNML) was one of these proposals, which
focussed on the problem of the different Petri net types. Since that time, we
have worked out the details and have implemented PNML as the file format for
the Petri Net Kernel [5,10]. In this paper, we discuss the concepts of PNML and
present its syntax and semantics.

The design of PNML was governed by the following principles:

Readability. The format should be human readable and editable with a con-
ventional text editor.

Universality. The format should not exclude any version of Petri nets. Rather,
it should be possible to represent any version of Petri nets with any kind of
extensions.

? Supported by the Deutsche Forschungsgemeinschaft within the project ‘Petri Net
Technology’.

mailto:Michael Weber <mweber@informatik.hu-berlin.de>
mailto:Ekkart Kindler <kindler@informatik.hu-berlin.de>


Mutuality. The format should allow us to extract as much information as pos-
sible from a Petri net – even if the Petri net type is unknown. Therefore,
the format must extract the common principles and the common notations
of Petri nets.

Clearly, the use of XML guarantees the readability of the format1. Univer-
sality can be guaranteed by attaching all additional information of a particular
Petri net type to the objects of the net. This is achieved by labelling net objects
and the net itself. The legal labels, their possible values, and the possible combi-
nation of values are defined by a Petri Net Type Definition (PNTD). Mutuality
can be guaranteed by conventions, which are a set of standardized labels. Tech-
nically, the conventions are an extensible collection of possible labels along with
a description of their semantics and their typical use. Then, a new PNTD can be
built from these labels and, possibly, some new ones.

Another important issue for interchange formats is the size of real world
systems. Typically, real world systems are too large to be drawn on a single page
– even if the page is unbounded in principle. Therefore, tools have mechanisms
for editing large systems. But, each tool provides a different mechanism. To cope
with this problem, PNML provides a net type independent mechanism for editing
and structuring large nets. Actually, there are two mechanisms, a simple one and
a more flexible one:

Pages and references. Pages and references allow the user to draw a net on
different pages and to relate these nets by merging some nodes via so-called
references. Due to its simplicity and because most tools support similar mech-
anisms, it should be easy to export and import those nets by any tool.
Therefore, this mechanism is part of PNML. The problem with this simple
concept, however, is that it does not support abstraction. It basically allows
us to draw large nets without any structure.

Modules. In many cases, the use of modules is more convenient because the
same module can be used several times, once defined. Thus, a system can
be built recursively from module instances, which reflects the way engineers
build systems. Therefore, modules support abstraction much better than the
simple page concept. Since the module concept is more evolved, it might not
be supported by most tools. But, we provide a semantics in terms of pages
and references, which could be run as a preprocessor for those tools not
supporting modular PNML.

Pages and references2 are a widely used concept for drawing large systems.
Many of today’s tools support this concept with a similar semantics. Maybe, the
use of pages has become popular by Design/CPN [4]. Modules, however, are not
widely used, and there is no unique semantics for modules. The reason is that, in
1 To be honest, the true argument for using XML is its popularity, which is a good

sales argument.
2 References are sometimes called merge nodes.



most cases, the module concept exploits the special features of a particular Petri
net type. In particular, this applies to module concepts that support dynamic
creation of module instances at runtime such as in object nets of Renew [11] or in
higher-order nets of the Moses project [9]. Here, we present a module concept that
works for any Petri net type. Therefore, we restrict ourselves to static instances
(module instances are created at the buildtime of a system only). This concept
is similar to the module concept used for Signal/Event-systems [7]; it is more
general, however, because it supports modules with parameters and because it
is not restricted to a particular Petri net type.

2 Concepts

The concepts of PNML are independent from its syntactic representation. In
particular, it is independent from XML. Therefore, we discuss its concepts and
its terminology, first. Its XML syntax will be discussed in Sect. 3.

Remember that universality is one of the main principles of PNML. Therefore,
PNML must be sufficiently general to represent all versions of Petri nets, on the
one hand. On the other hand, mutuality requires to capture the essence of Petri
nets and to exclude all kinds of nonsense, which does not represent a Petri net
at all. This is achieved by providing a general format, which is restricted to the
specific needs of a particular version of Petri net by defining a Petri net type.

2.1 General format

We start with the general format. Basically, the general format of PNML is
a labelled graph with two kinds of nodes: places and transitions. But, there
are many more concepts, which will be explained in the following paragraphs.
Figure 1 gives an overview on all concepts, which can serve as a road-map while
reading the following paragraphs.

Petri nets and objects. A file that meets the requirements of the interchange
format is called a Petri net file; it may contain several Petri nets. Each Petri net
consists of objects, where the objects, basically, represent the graph structure of
the Petri net. Thus, an object is a place, a transition, or an arc. For structuring
a Petri net, there are three other kinds of objects, which will be explained later
in this section: pages, reference places, and reference transitions. Each object
within a Petri net file has a unique identifier, which can be used to refer to this
object.

For convenience, we call a place, a transition, a reference place, or a refer-
ence transition a node, and we call a reference place or a reference transition a
reference node.

Labels. In order to assign further meaning to an object, each object may have
some labels. Typically, a label represents the name of a node, the initial marking



Attribute Annotation

graphics

ref

source

target

ref

PetriNetFile

PetriNet ToolInfo

LabelObject
id
graphics

name
value

Node

Place RefPlace RefTransition Transition

RefNode

Page Arc

0..*

0..*

0..*

0..*

0..*

0..*

0..*
0..*

tool
version

0..*

0..*

0..* 0..*

type
id

Fig. 1. Pure PNML: An overview

of a place, the guard of a transition, or the inscription of an arc. In addition, the
Petri net itself may have some labels. For example, the declarations of functions
and variables that are used in the arc inscriptions could be labels of a Petri net.
The legal labels and the legal combinations of labels are defined by the type of
the Petri net, which will be discussed in Sect. 2.3.

We distinguish between two kinds of labels – annotations and attributes. An
annotation is a label with an infinite domain of legal values. Typically, a label will
be displayed as text near the corresponding object. For example, names, initial
markings, arc inscriptions, and transition guards are annotations. An attribute
is a label with a finite (and small) domain of legal values. Typically, the value
of an attribute is not display textually, but is represented in the form, style, or
colour of the object itself. For example, the arc type could be an attribute of an
arc with domain: normal, read, inhibitor, reset (and maybe some more). The
shape of the arc will depend of this attribute. Another example is an attribute
for classifying the nodes of a net as proposed by Mailund and Mortensen [8].
So, the basic difference between an annotation and an attribute of an object is



that an annotation is displayed as a separate text near the object, whereas an
attribute has impact on the shape of the object itself. Therefore, an annotation
needs some information on the (relative) position of the displayed text, whereas
attributes do not need this information. Note, however, that PNML does not
define the impact of an attribute on the shape of the corresponding object. This
is left to the implementation of the tool3.

Graphical information. Each object and each annotation is equipped with
some graphical information. For a node, this information is its position; for an
arc, it is a list of positions that define intermediate points of the arc. For an
annotation, the graphical information is its relative position with respect to
the corresponding object4. Absolute as well as relative positions refer to the
reference point of an object or of an annotation respectively. By default, the
reference point is the middle of the graphical representation for an object; it is
the lower left point of the graphical representation for an annotation. For an
arc, the reference point is the middle of the first segment of the arc. Future
extensions might allow us to define the position of a reference point of an object
or an annotation explicitly. All positions refer to Cartesian coordinates (x, y).
As for many graphical tools, the x-axis runs from left to right and the y-axis
runs from top to bottom; but, we do not fix a cunit5.

Tool specific information. For some tools, it might be necessary to store some
internal information, which is not supposed to be used by other tools. In order to
store internal information, each object and each label may be equipped with tool
specific information. The internal format of the tool specific information is up to
the tool. But, tool specific information is clearly marked and is assigned the name
of the specific tool. Therefore, other tools can easily ignore this information.
In general, we discourage the use of tool specific information. In some cases,
however, tool specific information might be unavoidable.

Pages and reference nodes. A Petri net can be structured by the help of
pages as known from several Petri net tools (e. g. Design/CPN [4]). A page is an
object that may consist of other objects – it may consist even of further pages.
An arc, however, may connect nodes on the same page only. In order to connect
Petri net nodes on different pages, we can use reference nodes: A reference node
may refer to any node of the Petri net – located on any page of the net. We
require only that there are no cyclic references; this guarantees that, in the end,
each reference node refers to exactly one place or exactly one transition of the
Petri net. A reference node is only a representative for this node. Reference nodes
3 Of course, the conventions for the use of some labels can recommend a graphical

representation of objects with a particular attribute. But, this is not part of PNML.
4 For an annotation of the net itself, the position is absolute.
5 The size of objects and of labels as well as units are not part of PNML; but they

can be easily included in a future version.



may have labels, too. But, these labels do not have any meaning. Concerning
the semantics of the net, the reference node inherits the labels from the node it
refers to. This way, it is always possible to flatten the corresponding net without
knowing the meaning of the labels and without knowing the semantics of the
particular Petri net type (see Sect. 4 for details).

2.2 Modules

Up to now, we have introduced the concepts of pure PNML, i. e. PNML with-
out modules. In this section, we introduce the additional concepts of modular
PNML, which are basically module definitions and modules instances. In order
to illustrate these concepts, we start with an example.

Example. For simplicity, we use P/T-systems as the Petri net type in our
example. Modular PNML, however, works for any Petri net type.

First, we consider the definition of a module. Figure 2 shows the definition of
a module M1. This module consists of two places6 x and y, two transitions t1 and

t1

t2
x y

p2p1

M1

Fig. 2. A module M1

t2 and some arcs. This internal implementation, however, is not accessible from
outside the module. In order to give the environment access to some internal
elements of the module, the module defines an interface. In our example, the
interface consists of a place p1, which is imported from the environment of the
module, and a place p2, which is exported to the environment of the module. The
import place p1 is a formal parameter, which is supplied when instantiating the
module (see below for details); it is represented by a dashed circle. The export
place can be used in the environment of an instance of the module; it is repre-
sented by a solid circle. The interface and the implementation of a module are
related by references. In our example, reference place x, which is represented as a
shaded circle, refers to import place p1. The reference is represented graphically
by a dashed arrow and should not be confused with a Petri net arc, which would
6 Actually, x is a reference place, which is indicated by the shading.



be represented by a solid arrow. So, the reference place x is a representative for
a place that will be provided as a parameter when the module is instantiated.
Likewise, the export place p2 refers to place y. So, a reference to export place p2
of an instance of the module will actually refer to place y (see below).

Next, we build a net from several instances of module M1. Figure 3 shows a
graphical representation of a net n1 with three instances of module M1, which
are named m1, m2, and m3, respectively. In the definition of the net, we define

p
m3m2m1

p1 p2

M1

p1 p2

M1

p1 p2

M1

Fig. 3. A net n1 built from three instances of module M1

a place p with initial marking 1 and three instances of module M1. The first
instance m1 takes the place p as the actual parameter for import place p1,
which is represented graphically by a reference from the import place p1 of
instance m1 to place p. The second instance m2 takes the export place p2 of m1
(denoted by m1.p2) as the actual parameter for p1. Likewise, the third instance
m3 takes m2.p2 as the actual parameter for p1. Altogether, the net gives us the
P/T-system shown in Fig. 4. We call this P/T-system the semantics of the net
n1. This semantics will be defined, by recursively inlining the modules for the
corresponding instances (see Sect. 4 for details). As expected, the three instances

m2.t1

m2.t2m1.t2

m1.t1

m1.y m2.y

m3.t1

m3.t2

m3.yp

Fig. 4. The semantics of n1

form a line, which starts with place p and which merges p2 of an instance with
p1 of the next instance. The names of the places and transitions in the different
instances are qualified by the name of corresponding instance in order to avoid
name clashes. Note that the import places and the export places have completely
vanished; they are only representatives for the actual parameters.

Of course, the number of instances and their arrangement may be different
in other nets built from module M1. For example, we could arrange the three
instances of module M1 as a ring by passing m3.p2 as a parameter for p1 to the
first instance. We will see in the definition of the semantics, that such cyclic use



of export objects as parameters for import objects does not cause any problems.

This finishes our example, and we start with a more detailed discussion of
the concepts of PNML.

Symbols. Sometimes, it is necessary to pass other arguments than nodes to
a module. For example, a module could implement a channel for some type of
messages, where the particular type is a sort provided by the environment when
instantiating the module. This is known from templates in C++ or from pa-
rameterized data types, in general. Since modular PNML should be independent
from a concrete Petri net type, we cannot fix a syntax for legal parameters for
a module. But, we permit the definition of symbols – without knowing their
meaning. Then, these symbols may be imported and exported in the same way
as discussed for nodes in our example. Thus, symbols are objects, too. In par-
ticular, there are also reference symbols, which refer to other symbols. A symbol
may occur within any label and must have a unique identifier.

In high-level Petri nets, the symbols could be sort symbols, operation sym-
bols, and variable symbols, which define the legal inscriptions of places and arcs.
By allowing to export and to import these symbols, it is possible to define such
a symbol once and to use it in other modules.

Identifiers. In modular PNML, we restrict the values of identifiers to strings not
containing a dot character (.). The reason is, that we need the dot for qualifying
the name of an object of a particular instance of a module, as known from object
oriented programming.

Module definitions. Simply spoken, a module definition is a net with an inter-
face. For an instance of a module, only the objects of the interface are accessible
from outside the instance. The rest of the module definition is its implementation.

Import and Export. The interface of a module contains objects, which can
be accessed from outside the module. Remember that an object can be either
a node or a symbol. We distinguish two kinds of interface objects: import ob-
jects and export objects. Import objects are representatives of objects that are
provided as parameters upon instantiation of the module. The implementation
may refer to these objects by a reference to the corresponding import object (cf.
the reference from x to import node p1 in Fig. 2). Export objects are defined
inside the implementation of the module. Actually, an export object is just a
reference object that refers to an object of the implementation of the module.
This way, an export object allows the environment to refer to some object in the
implementation of the module without knowing implementational details. For
semantical reasons, however, modular PNML does not allow direct or indirect
references from an export object to an import object of the module itself (see
Sect. 4 for details).



NodeModInstance

ParamAssign
ref

ref

instance

param

ref

value

PetriNetFile

Object

PetriNetModuleDef

0..*

0..*

0..*

RefNode GlobalNode

GlobalRef
0..*

InstRefNode

0..* 0..*0..*

Interface

0..*

0..*

0..*

0..*

ImportNode

ExportNode

0..*

0..*

Fig. 5. Modular PNML: An overview

Global Nodes, Symbols, and References. Sometimes, we would like to
have access to an object from all modules. We could define this object in the
outermost net and pass it as a parameter to all other modules. This, however, is
quite inconvenient. Therefore, modular PNML supports the definition of global
objects, which can be referred to from any module without explicitly passing the
global object as a parameter to that module. A reference to a global object is
called a global reference. Note that nodes as well as symbols can be global.

Module Instances. A module can be used in a net (or in another module) by
instantiating the module. This means that an instance defines a unique identifier
within the net and assigns actual objects of the net to the parameters (i. e. to the
import objects) of the module. Graphically, these assignments are represented by
references from the import objects to its actual parameter. For example, import
place p1 of instance m1 in Fig. 3 is assigned the actual parameter p. Export
objects of a module instance are regarded as reference objects. This means that
export objects can be used like reference objects. In particular, other reference
objects can refer to them or they can be a parameter for an import object of a
module instance.

Overview. Figure 5 gives an overview on the basic concepts of modular PNML.
But, we leave out some details. For example, we do not distinguish places and



type definitions

of nets of
type A

file format

PNML
new type
def. B

Conventiontype A

Fig. 6. Interplay of PNML, PNTD and the conventions document

transitions; we consider nodes only. Moreover, we omit symbols, since they ex-
hibit the same structure as nodes.

2.3 Type definition

Up to now, we have discussed the general structure of a Petri net file. The
available labels and the legal combinations of labels for a particular object are
defined by a Petri net type. Technically, a Petri net type is a document that
defines the XML syntax of labels; e. g. a Document Type Definition (DTD) file
or a schema defined with an XML schema language such as XML Schema [13]
or TREX [2]. Conceptually, a Petri net type is a specialization of the general
format presented in the previous sections. It adds the definitions of the labels to
the objects and to the net respectively.

Figure 6 illustrates the relation between PNML and a Petri net type defini-
tion (PNTD). A PNTD which is taken from a pool of various type definitions
parameterizes the basic form of PNML. Thus, we get the PNML based file for-
mat for Petri nets of that type described by the PNTD. The right part of the
illustration will be explained below.

2.4 Conventions

In principle, a Petri net type can be freely defined. In practice, however, a Petri
net type chooses the labels from a collection of predefined labels that are provided
in a separate document: the conventions. The conventions guarantee that the
same label has the same meaning in all Petri net types. This allows us to exchange
nets among tools with a different, but similar Petri net type.

The conventions are a collection of predefined labels. This collection, how-
ever, is not part of PNML. PNML provides only the mechanism for defining the
conventions and for including parts of the conventions into a Petri net type.



Defining and maintaining the conventions document is an on-going process7. In
Sect. 3.4, we discuss a small example, which illustrates how such a conventions
document could look like. It may serve as a starting point to develop the con-
ventions document. This development will converge in a document containing
the most relevant labels from all kinds of Petri nets.

Figure 6 illustrates the relation between the conventions, the Petri net types,
and the PNML. The right side shows the definition of a Petri net type based on
the conventions, i. e. the labels are chosen from the conventions document. The
new Petri net type definition is added to the pool of Petri net types and can be
used as a net type in a PNML file.

3 Realization

In this section, we briefly present the PNML8 syntax by discussing some exam-
ples. PNML is based on the Extensible Markup Language (XML) [12]. The Petri
net, the objects, and the labels are represented as XML elements. An XML ele-
ment is included in a pair of a start tag <element> and an end tag </element>.
An XML element may have XML attributes9 that equip the element with addi-
tional information. An XML attribute of an XML element is represented by an
assignment of a value to a key (the attribute’s name) in the start tag of the XML

element <element key=value>. An XML element may contain text or further
XML elements. An XML element without text or sub-elements is denoted by a
single tag <element/>. In our examples, we sometimes omit some XML elements.
We denote this by an ellipsis (...). All parts of PNML (PNML itself, the different
PNTDs and the conventions) were implemented with the XML schema language
TREX10 [2].

The tags of the XML elements defined in PNML are named after the concepts
(e. g. <place>, <transition> or <page>) given in Sect. 2. These tags of the con-
cept are the keywords of PNML; they are called PNML elements. Labels, however
are named after their meaning. Thus, any unknown XML element appearing in
a Petri net or in an object can be clearly identified as a label of the net or the
object. In our examples, the PNML keywords and the label for the name of an
object are underlined. The tags of the other labels, however, are not underlined
because they are keywords of a certain Petri net type definition not of the PNML

itself.
7 In fact, this process is strongly connected with the work of a standardization group

that was founded at the 22nd Conference on Petri Nets (ICATPN) 2001 in Newcastle,
U.K.

8 Please refer to http://www.informatik.hu-berlin.de/top/pnml/ for a full defini-
tion of PNML version 1.1 [6] and some examples.

9 Do not confuse XML attributes with attributes of Petri net objects.
10 TREX has been merged with RELAX to create RELAX NG [3]. TREX and RELAX

NG are very similar such that the TREX implementation of PNML is its RELAX
NG implementation, too. RELAX NG is specified by a committee of the XML stan-
dardization organization OASIS (http://www.oasis-open.org).

http://www.informatik.hu-berlin.de/top/pnml/
http://www.oasis-open.org


ready to produce

P

x

Fig. 7. An example net

3.1 The Petri Net Markup Language

Here, we discuss the syntax of the PNML concepts presented in Sect. 2.1. The
first examples (List. 1-3) refer to the example net in Fig. 7.

The unique identifier of a Petri net or an object of a Petri net is given by an
XML attribute id of the corresponding PNML element. The value of this attribute
must meet the requirements for the attribute type ID of XML (cf. [12]); i. e. it
must be a string starting with a letter or the underscore character, followed by
letters, digits or several other characters except ‘.’.

Listing 1 shows the representation of a place with the identifier p1. The
place has two labels; to be more precise, it has two annotations. The first one
represents the name of the place <name>, whereas the second one represents its
initial marking <initialMarking>. An annotation consists of its value <value>
and, possibly, of some graphical information. In our example, both annotations as
well as the place itself have graphical information, which are represented by XML

Listing 1. The PNML code of a place

<place id="p1">
<graphics>
<position x="20" y="40"/>

</graphics>
5 <name>

<value>ready to produce</value>
<graphics>
<offset x="-10" y="10"/>

</graphics>
10 </name>

<initialMarking>
<value>P</value>
<graphics>
<offset x="-1" y="-1"/>

15 </graphics>
</initialMarking>

</place>



Listing 2. The PNML code of a transition

<transition id="t1">
...
<toolspecific tool="PN4all" version="0.1">
<hidden/>

5 </toolspecific>
</transition>

Listing 3. The PNML code of an arc

<arc id="a1" source="p1" target="t1">
<graphics>
<position x="10" y="30"/>
<position x="10" y="10"/>

5 </graphics>
<inscription>
<value>x</value>
<graphics>
<offset x="-6" y="-16"/>

10 </graphics>
</inscription>
<type value="inhibitor"/>

</arc>

elements <graphics>. The concrete definition of the XML element <graphics>
depends on the context in which it appears. A place has a position, whereas an
annotation has an offset position.

Listing 2 shows the representation of a transition, which is similar to the
representation of a place. Transition t1 contains tool specific information, which
makes it a hidden transition of some imaginary tool PN4all version 0.1. Syn-
tactically, toolspecific information is represented by <toolspecific>; this XML

element must have at least the shown XML attributes and may contain further
XML elements defined by the tool.

Listing 3 shows the representation of an arc: The source and the target node
are given as XML attributes of the corresponding element <arc>. PNML requires
that each arc has a unique identifier, which allows us to have two or more arcs
between the same nodes. The graphical information of the arc contains a list
of points. These points represent intermediate points of the arc. The offset in
the graphical information of the <inscription> defines the position of the label
relative to the reference point of the arc. Arc a1 has an additional attribute
called <type>; it indicates that it is an inhibitor arc. Note, that the shape of the
inhibitor arc is tool dependent; other tools could use a different shape.



Listing 4. The PNML code of a page

<page id="pg1">
<name>
<value>Example page of the net</value>

</name>
5 <referencePlace id="rp1" ref="p1">

<name>...</name>
<graphics>
<position x="20" y="20"/>

</graphics>
10 </referencePlace>

<referenceTransition id="rt1" ref="t1">
...

</referenceTransition>
<place id="p2">...</place>

15 <transition id="t2">...</transition>
<arc id="a2" source="rp1" target="t2">
...

</arc>
...

20 </page>

Listing 4 shows the representation of a page and of reference nodes of a
Petri net. A page may have the same objects as the net itself – even pages
and reference nodes. A reference node (indicated by tags <referencePlace> or
<referenceTransition>) refers to a node of the net via the XML attribute ref.
Its value refers to the identifier of a node of this net. Furthermore, a reference
node may have its own graphical information, tool specific information, and
labels. Remember that these labels have no real meaning, since they are ignored
in the underlying flattened net. But, they allow reference nodes to carry their
own name or other informal information. Note that the source and the target of
an arc must be nodes on the same page.

Listing 5 shows the representation of a Petri net. A net consists of pages,
modules instances (see below) and other objects. In our example, there is an
annotation defining the net’s name. The type of the net is given in the XML

attribute type.

3.2 Modular PNML

Now, we discuss the syntax of modular PNML. To this end, we come back to the
examples of Sect. 2.2. In order to keep the examples small, we omit graphical
information from the PNML code.



Listing 5. The PNML code of a net

<net id="n1" type="HLnet">
<name>
<value>Example high-level net</value>

</name>
5 <place id="p1">

...
</place>
<page id="pg1">
...

10 </page>
...

</net>

A module is defined by the PNML element <module>. This element contains
both, the interface of the module and its implementation. The interface is tagged
by <interface> and contains import and export objects of the module. The
nodes of the interface may have graphical information as described above. The
rest of the module contains the implementation of the module, which is the same
as for nets. In addition, an implementation of a module may use instances of any
other module. The only restriction is that there is no cyclic dependency between
the modules. Moreover, reference objects of the implementation may refer to the
import nodes of the module’s interface.

Listing 6 shows the PNML code of module M1 in Fig. 2. There is a module
with its interface and its implementation. The interface of a module contains
nodes and symbols with their identifiers to be imported or exported. In our
example (List. 6, cf. Fig. 2), there is one import place p1 and there is one export
place p2. The implementation part in our example does not use other modules.
Note that reference objects of the implementation may refer to import objects
but not to export objects of the interface of the module. Export objects refer to
objects of the implementation. But, they are not allowed to transitively refer to
import objects.

If a module M1 (or a net) contains an instance of a module M2, we say M1

uses M2. The use of a module is tagged by the PNML element <instance>.
This element refers to the Uniform Resource Identifier (URI) of the correspond-
ing module with the instance’s XML attribute ref. As mentioned above, the
uses relation must not have cycles. The PNML element <instance> contains ref-
erences to nodes and symbols which serve as actual parameters for the import
objects of the module. Such a reference names the parameter that is instantiated
and refers to a ‘real’ object occurring in the instantiating net or module.

References to export objects of an instance are composed of a reference to
that module instance (the XML attribute instance) and a reference to an export
object of that instance (the XML attribute ref).



Listing 6. The PNML Code of the module in Fig. 2

<module name="M1">
<interface>
<importPlace id="p1"/>
<exportPlace id="p2" ref="y"/>

5 </interface>
<referencePlace id="x" ref="p1"/>
<transition id="t1"/>
<transition id="t2"/>
<place id="y"/>

10 <arc source="x" target="t1"/>
<arc source="t1" target="y"/>
<arc source="y" target="t2"/>
<arc source="t2" target="x"/>

</module>

Listing 7. The PNML Code of a net using modules (cf. Fig. 3)

<net id="n1">
<place id="p">
<initialMarking>
<value>1</value>

5 </initialMarking>
</place>
<instance id="m1" ref=URI#M1>
<importPlace parameter="p1" ref="p"/>

</instance>
10 <instance id="m2" ref=URI#M1>

<importPlace parameter="p1" instance="m1" ref="p2"/>
</instance>
<instance id="m3" ref=URI#M1>
<importPlace parameter="p1" instance="m2" ref="p2"/>

15 </instance>
</net>

Listing 7 shows the PNML code of the net in Fig. 3. Net n1 contains a place p
with an initial marking of one token and three instances of the module M1. Place
p serves as the actual parameter for p1 in instance m1. The module instance m2
gets the export place p2 of the instance m1 as its actual parameter p1 and so on.

Furthermore, PNML allows us to define global nodes and global symbols.
They are tagged by <globalPlace>, <globalTransition>, and <globalSymbol>
respectively. Similarly, we add the XML attribute gref to reference objects and



Listing 8. The PNTD for P/T-systems ptNet.pntd

<grammar ns="http://www.informatik.hu-berlin.de/top/pnml"
xmlns="http://www.thaiopensource.com/trex">

<include href="pnml.trex"/>
<include href="conv.trex"/>

5 <define name="NetType" combine="replace">
<string>ptNet</string>

</define>
<define name="Place" combine="interleave">
<optional>

10 <ref name="InitialMarking"/>
</optional>

</define>
<define name="Arc" combine="interleave">
<optional>

15 <ref name="Inscription"/>
</optional>

</define>
</grammar>

import parameters of interfaces for references to global objects. This XML at-
tribute is alternative to both the XML attribute instance and ref. The value
of the XML attribute gref refers to a globally defined object.

3.3 Petri net type definition

Next, we discuss the syntax of Petri net type definitions (PNTD). As men-
tioned above, we use the XML schema language TREX [2] for defining PNML

and the particular PNTDs, as well. Listing 8 shows the PNTD for P/T-systems
ptNet.pntd. For P/T-systems, we need two additional labels: one label for
places, which represents the initial marking, and one label for arcs, which rep-
resents the arc inscription. Listing 8 shows the TREX file for the definition of
P/T-systems. It starts with some TREX specific stuff for defining a grammar.
Then it includes the definition of PNML and of the conventions document, from
which we choose the definition of the labels. The conventions document itself,
will be discussed in Sect. 3.4. Both, the PNML and the conventions document
are TREX grammars, too.

Then, the file gives a name to the defined Petri net type (ptNet). Next, the file
lists the objects that are equipped with additional labels. In our example, these
objects are places and arcs ("Place" and "Arc"). The definition of a label can
be either given explicitly, or can be taken from the conventions document. In our
example, the labels are taken from the conventions document by referring to their
names in that document ("InitialMarking" and "Inscription"). Technically,



Listing 9. An example conventions document

<grammar ns="http://www.informatik.hu-berlin.de/top/pnml"
xmlns="http://www.thaiopensource.com/trex">

<include href="pnml.trex"/>
<define name="InitialMarking">

5 <element name="initialMarking">
<ref name="Annotation"/>

</element>
</define>
<define name="Inscription">

10 <element name="inscription">
<ref name="Annotation"/>

</element>
</define>

</grammar>

this is achieved by the TREX element <ref>. The <optional> elements indicate
that the labels are optional in this Petri Net type.

3.4 Conventions

At last, we give an example of a very simple conventions document, which defines
just those two labels that were used in the example above. It should illustrate
the mechanism of PNML for including definitions from a conventions document.
A real conventions document would contain many more label definitions and
would require a more involved taxonomy for labels. A standardized conventions
document is subject to future research and to many discussions.

Listing 9 shows an example of entries in a conventions document. First, it
includes the definition of labels (annotations in our case) from the general PNML

definition pnml.trex. Then, it defines the two labels, which were used in the ex-
ample above ("initialMarking" and "inscription"). Both of them are normal
PNML annotations, which means that their value can be an arbitrary string; but
we could use the full power of TREX for defining other domains.

4 Semantics

In this section, we will briefly discuss the semantics of PNML. Of course, it is
impossible to define the semantics of the Petri net represented by a PNML file
because this strongly depends on the Petri net type. Though there is some theo-
retical work on a unified framework for defining Petri nets, there is no formalism
yet that deals with all types of nets definable by a PNTD. Therefore, we assume
that along with a new PNTD, there will be a definition of the semantics of this
Petri net type for nets without pages, references and modules.



In the following, we will give a precise semantics to pages, references, and
modules by translating them to a net without these concepts. We proceed in
two steps. First, we define a semantics for pure PNML by eliminating pages and
references; then, we give a semantics for modular PNML by eliminating modules
(resp. their instances) by translating them to pure PNML. For a more detailed
discussion of this semantics, we refer to [6].

4.1 Pages and references

The semantics of pages and references is quite simple: We omit the pages from
the PNML file and we resolve all references. Resolving references means that each
reference object is replaced by the object it refers to (directly or indirectly via
other reference objects). Actually, we delete the reference object, and we redirect
all its attached arcs to the object it refers to. Note that by deleting the reference
object, all labels of the reference object are lost, but this is no problem because
labels of reference objects do not have any meaning.

Resolving all references is always possible, because PNML requires that there
are no cyclic references between reference objects. This way, it is always possi-
ble to obtain an equivalent PNML file without pages and reference nodes. We
have lost only graphical information and structuring information. We call this
transformation flattening of a PNML net.

4.2 Modules

For modular PNML as defined in Sect. 2.2, we define the semantics by translating
it to pure PNML. To this end, we basically replace each instance of a module by
a copy of its implementation. In order to avoid name clashes, the identifiers of
the implementation of a module will be preceded by the instance’s name, where
the names are separated by a dot11. In order to keep the module structure of
the original model, the implementation of each module instance is defined on
a separate page, which receives the name of the module instance. We call this
replacement the inlining of a module instance.

The inlining process can be applied recursively for modules that use module
instances in their implementation. In the end, we obtain a net in pure PNML.
Note that inlining of module instances will never give us cyclic references, pro-
vided that there are no cyclic references in the module definition itself and no
references from an export node to an import node. Thus, we can flatten the
obtained net after the inlining process.

Figure 8 shows three stages of the inlining and flattening process for the net
from Fig. 3. The first line shows the original net with three instances of module
M1. The second line shows three different stages of the inlining process for the
three different instances m1, m2, and m3: for m1, it shows the replacement by the
module definition; for m2, it shows the replacement after renaming all objects
11 By forbidding the dot in identifiers in modular PNML, this simple naming scheme

gives us unique names for all instances, even when applied recursively.



m3.t1

m3.t2
m3.y

p

m2.t1

m2.t2
m2.y

m1.t1

m1.t2
m1.y

p

p2
M1

p2
M1

p2p1 p1

p

t1

t2
x y

p2
m1:M1

m2.t1

m2.t2
m2.x m2.y

m2.p2

m3.t1

m3.t2
m3.y

m2.p1p1

M1
p1

m2

m1

m1 m3

Fig. 8. Illustration of inlining and flattening

(by preceding each name with the instance’s name) on a separate page; for m3,
the reference nodes and the page have already been eliminated (flattening). The
bottom line shows the overall semantics of the three module instances after
inlining and flattening.

5 Conclusion

In this paper, we have presented PNML and its modular extension as an inter-
change format for Petri nets. The main feature of PNML is its universality, which
is achieved by representing a net as a labelled graph along with a Petri Net Type
Definition. The Petri Net Type Definition defines the legal labels for a particular
Petri net type. The definition of modular PNML shows that universality carries
over to a module concept, which can be used with any Petri net type. This way,
PNML provides a way to exchange Petri nets between different tools without
loosing too much information.

PNML itself is now in a stable state. Currently, it is supported by the PNK

[10] and Renew [11]. For a broader acceptance, we need a standardized set of
Petri net types and a standardized set of labels, which covers most of the existing
versions of Petri nets. PNML provides a mechanism for defining Petri net types



and for using labels from a conventions document. The Petri net types and the
conventions document, however, are not part of PNML. The development and
the standardization of the conventions document is an on-going process, which
requires further research and interaction among researchers. More information
on this process can be found on the web: http://www.informatik.hu-berlin.
de/top/pnml/.

References

1. Rémi Bastide, Jonathan Billington, Ekkart Kindler, Fabrice Kordon, and Kjeld H.
Mortensen, editors. Meeting on XML/SGML based Interchange Formats for Petri
Nets, Århus, Denmark, June 2000. 21st ICATPN.

2. James Clark. TREX – tree regular expressions for XML. http://www.

thaiopensource.com/trex/. 2001/01/20.
3. James Clark and Makoto Murata (eds.). RELAX NG specification. http://www.

oasis-open.org/committees/relax-ng/. 2001/12/03.
4. Design/CPN. http://www.daimi.au.dk/designCPN/. 2001/09/21.
5. Ekkart Kindler and Michael Weber. The Petri Net Kernel – an infrastructure for

building Petri net tools. Software Tools for Technology Transfer (STTT), 3(4):486–
497, 2001.

6. Ekkart Kindler and Michael Weber. A universal module concept for Petri
nets. an implementation-oriented approach. Informatik-Berichte 150, Humboldt-
Universität zu Berlin, June 2001.

7. Arndt Lüder and Hans-Michael Hanisch. A signal extension for Petri nets and its
use in controller design. Fundamenta Informaticae, 41(4):415–431, 2000.

8. Thomas Mailund and Kjeld H. Mortensen. Separation of style and content with
XML in an interchange format for high-level Petri nets. In Bastide et al. [1], pages
7–11.

9. The Moses Project. http://www.tik.ee.ethz.ch/~moses. 2002/03/04.
10. Petri Net Kernel. http://www.informatik.hu-berlin.de/top/pnk/. 2001/11/09.
11. Renew: The Reference Net Workshop. http://www.renew.de. 2002/03/04.
12. World Wide Web Consortium (W3C) (ed.). Extensible Markup Language (XML).

http://www.w3.org/XML/. 2000/10/06.
13. World Wide Web Consortium (W3C) (ed.). XML Schema. http://www.w3.org/

XML/Schema. 2001/05/02.

http://www.informatik.hu-berlin.de/top/pnml/
http://www.informatik.hu-berlin.de/top/pnml/
http://www.thaiopensource.com/trex/
http://www.thaiopensource.com/trex/
http://www.oasis-open.org/committees/relax-ng/
http://www.oasis-open.org/committees/relax-ng/
http://www.daimi.au.dk/designCPN/
http://www.tik.ee.ethz.ch/~moses
http://www.informatik.hu-berlin.de/top/pnk/
http://www.renew.de
http://www.w3.org/XML/
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema

	The Petri Net Markup Language

